Xilinx, Inc.
METHODS OF OPTIMIZATION OF COMPUTATIONAL GRAPHS OF NEURAL NETWORKS

Last updated:

Abstract:

The present invention discloses a method to optimize a neural network computational graph. The computational graph is used for performing neural network calculation by a computational platform. The computational platform reads data needed by the calculation from off-chip memory. The method comprises: layers which can be fused are selected at least based on an optimization rule to reduce frequency of data exchange between the computational platform and the off-chip memory, carrying out fusion for at least two adjacent layers in the computational graph according to the selected layer objects. Here, the at least two adjacent layers are at least one of the following: horizontally adjacent layers having the same input of feature maps; and longitudinally adjacent layers in which the calculation results of a feature map of a previous layer are at least part of input for a next layer. The method to optimize a computational graph of the present invention can be automatically carried out based on rules or through isomorphic subgraph matching. Thus, an optimal reconstruction mode for executing the computational graph is found out, execution efficiency of the neural network computational platform is improved.

Status:
Application
Type:

Utility

Filling date:

29 Mar 2019

Issue date:

3 Oct 2019