Adobe Inc.
SUPERVISED LEARNING TECHNIQUES FOR ENCODER TRAINING

Last updated:

Abstract:

Systems and methods train an encoder neural network for fast and accurate projection into the latent space of a Generative Adversarial Network (GAN). The encoder is trained by providing an input training image to the encoder and producing, by the encoder, a latent space representation of the input training image. The latent space representation is provided as input to the GAN to generate a generated training image. A latent code is sampled from a latent space associated with the GAN and the sampled latent code is provided as input to the GAN. The GAN generates a synthetic training image based on the sampled latent code. The sampled latent code is provided as input to the encoder to produce a synthetic training code. The encoder is updated by minimizing a loss between the generated training image and the input training image, and the synthetic training code and the sampled latent code.

Status:
Application
Type:

Utility

Filling date:

23 Jul 2021

Issue date:

21 Apr 2022