Adobe Inc.
Compressing digital images utilizing deep learning-based perceptual similarity

Last updated:

Abstract:

Methods, systems, and non-transitory computer readable storage media are disclosed for utilizing deep learning to intelligently determine compression settings for compressing a digital image. For instance, the disclosed system utilizes a neural network to generate predicted perceptual quality values for compression settings on a compression quality scale. The disclosed system fits the predicted compression distortions to a perceptual distortion characteristic curve for interpolating predicted perceptual quality values across the compression settings on the compression quality scale. Additionally, the disclosed system then performs a search over the predicted perceptual quality values for the compression settings along the compression quality scale to select a compression setting based on a perceptual quality threshold. The disclosed system generates a compressed digital image according to compression parameters for the selected compression setting.

Status:
Grant
Type:

Utility

Filling date:

25 Sep 2020

Issue date:

17 May 2022