Adobe Inc.
Deep Hybrid Graph-Based Forecasting Systems
Last updated:
Abstract:
In implementations of deep hybrid graph-based forecasting systems, a computing device implements a forecast system to receive time-series data describing historic computing metric values for a plurality of processing devices. The forecast system determines dependency relationships between processing devices of the plurality of processing devices based on time-series data of the processing devices. Time-series data of each processing device is represented as a node of a graph and the nodes are connected based on the dependency relationships. The forecast system generates an indication of a future computing metric value for a particular processing device by processing a first set of the time-series data using a relational global model and processing a second set of the time-series data using a relational local model. The first and second sets of the time-series data are determined based on a structure of the graph.
Utility
4 Nov 2020
5 May 2022