Adobe Inc.
Correcting dust and scratch artifacts in digital images
Last updated:
Abstract:
In implementations of correcting dust and scratch artifacts in digital images, an artifact correction system receives a digital image that depicts a scene and includes a dust or scratch artifact. The artifact correction system generates, with a generator of a generative adversarial neural network (GAN), a feature map from the digital image that represents features of the dust or scratch artifact and features of the scene. A training system can train the generator adversarially to reduce visibility of dust and scratch artifacts in digital images against a discriminator, and train the discriminator to distinguish between reconstructed digital images generated by the generator and real-world digital images. The artifact correction system generates, from the feature map and with the generator, a reconstructed digital image that depicts the scene of the digital image and reduces visibility of the dust or scratch artifact of the digital image.
Utility
13 May 2020
19 Jul 2022