Adobe Inc.
Making resource-constrained sequential recommendations
Last updated:
Abstract:
The present disclosure relates to recommending points of interest to a plurality of users based on a type of each user as well as constraints associated with the points of interest. For example, one or more embodiments determine a user type for each user and determine user preferences based on the user type. Additionally, the system can determine resource constraints associated with each point of interest, indicating limitations on the capacity of each associated resource. The system can then provide recommendations to the plurality of users based on the user types and the resource constraints. In particular, the system can recommend points of interest that satisfy the preferences corresponding to each user type subject to the resource constraints of each point of interest. For example, one or more embodiments involve solving a linear program that takes into account user types to obtain recommendation policies subject to the resource constraints.
Utility
7 Mar 2018
20 Sep 2022