Adobe Inc.
RENDERING IMAGES FROM DEEPLY LEARNED RAYTRACING PARAMETERS
Last updated:
Abstract:
Images are rendered from deeply learned raytracing parameters. Active learning, via a machine learning (ML) model (e.g., implemented by a deep neural network), is used to automatically determine, infer, and/or predict optimized, or at least somewhat optimized, values for parameters used in raytracing methods. Utilizing deep learning to determine optimized, or at least somewhat optimized, values for raytracing parameters is in contrast to conventional methods, which require users to rely of heuristics for parameter value setting. In various embodiments, one or more parameters regarding the termination and splitting of traced light paths in stochastic-based (e.g., Monte Carlo) raytracing are determined via active learning. In some embodiments, one or more parameters regarding the sampling rate of shadow rays are also determined.
Utility
28 Mar 2019
1 Oct 2020