Adobe Inc.
Generating stylized-stroke images from source images utilizing style-transfer-neural networks with non-photorealistic-rendering

Last updated:

Abstract:

This disclosure relates to methods, non-transitory computer readable media, and systems that integrate (or embed) a non-photorealistic rendering ("NPR") generator with a style-transfer-neural network to generate stylized images that both correspond to a source image and resemble a stroke style. By integrating an NPR generator with a style-transfer-neural network, the disclosed methods, non-transitory computer readable media, and systems can accurately capture a stroke style resembling one or both of stylized edges or stylized shadings. When training such a style-transfer-neural network, the integrated NPR generator can enable the disclosed methods, non-transitory computer readable media, and systems to use real-stroke drawings (instead of conventional paired-ground-truth drawings) for training the network to accurately portray a stroke style. In some implementations, the disclosed methods, non-transitory computer readable media, and systems can either train or apply a style-transfer-neural network that captures a variety of stroke styles, such as different edge-stroke styles or shading-stroke styles.

Status:
Grant
Type:

Utility

Filling date:

8 Nov 2018

Issue date:

18 Aug 2020