Autodesk, Inc.
TECHNIQUES FOR FORCE AND TORQUE-GUIDED ROBOTIC ASSEMBLY
Last updated:
Abstract:
Techniques are disclosed for training and applying machine learning models to control robotic assembly. In some embodiments, force and torque measurements are input into a machine learning model that includes a memory layer that introduces recurrency. The machine learning model is trained, via reinforcement learning in a robot-agnostic environment, to generate actions for achieving an assembly task given the force and torque measurements. During training, experiences are collected as transitions within episodes, the transitions are grouped into sequences, and the last two sequences of each episode have a variable overlap. The collected transitions are stored in a prioritized sequence replay buffer, from which a learner samples sequences to learn from based on transition and sequence priorities. Once trained, the machine learning model can be deployed to control various types of robots to perform the assembly task based on force and torque measurements acquired by sensors of those robots.
Utility
10 Sep 2021
7 Apr 2022