Applied Materials, Inc.
Adaptive control of wafer-to-wafer variability in device performance in advanced semiconductor processes
Last updated:
Abstract:
Systems and methods for controlling device performance variability during manufacturing of a device on wafers are disclosed. The system includes a process platform, on-board metrology (OBM) tools, and a first server that stores a machine-learning based process control model. The first server combines virtual metrology (VM) data and OBM data to predict a spatial distribution of one or more dimensions of interest on a wafer. The system further comprises an in-line metrology tool, such as SEM, to measure the one or more dimensions of interest on a subset of wafers sampled from each lot. A second server having a machine-learning engine receives from the first server the predicted spatial distribution of the one or more dimensions of interest based on VM and OBM, and also receives SEM metrology data, and updates the process control model periodically (e.g., wafer-to-wafer, lot-to-lot, chamber-to-chamber etc.) using machine learning techniques.
Utility
9 Oct 2018
23 Feb 2021