one
Systems and methods for hyperparameter tuning
Last updated:
Abstract:
A model optimizer is disclosed for managing training of models with automatic hyperparameter tuning. The model optimizer can perform a process including multiple steps. The steps can include receiving a model generation request, retrieving from a model storage a stored model and a stored hyperparameter value for the stored model, and provisioning computing resources with the stored model according to the stored hyperparameter value to generate a first trained model. The steps can further include provisioning the computing resources with the stored model according to a new hyperparameter value to generate a second trained model, determining a satisfaction of a termination condition, storing the second trained model and the new hyperparameter value in the model storage, and providing the second trained model in response to the model generation request.
Utility
26 Oct 2018
28 Dec 2021