one
Systems and methods for hyperparameter tuning

Last updated:

Abstract:

A model optimizer is disclosed for managing training of models with automatic hyperparameter tuning. The model optimizer can perform a process including multiple steps. The steps can include receiving a model generation request, retrieving from a model storage a stored model and a stored hyperparameter value for the stored model, and provisioning computing resources with the stored model according to the stored hyperparameter value to generate a first trained model. The steps can further include provisioning the computing resources with the stored model according to a new hyperparameter value to generate a second trained model, determining a satisfaction of a termination condition, storing the second trained model and the new hyperparameter value in the model storage, and providing the second trained model in response to the model generation request.

Status:
Grant
Type:

Utility

Filling date:

26 Oct 2018

Issue date:

28 Dec 2021