one
AUTOMATICALLY SCALABLE SYSTEM FOR SERVERLESS HYPERPARAMETER TUNING

Last updated:

Abstract:

A scalable system and method for completing a model task using a serverless architecture is disclosed. The system may include memory storing instructions and one or more processors. The method may include receiving a request to complete a model task; retrieving a first model and a first hyperparameter based on the request; provisioning computing resources to a first development instance configured to train the first model based on the first hyperparameter and the model task; training, by the first development instance, an instance of the first model to produce a trained model and terminating said training upon satisfaction of a training criterion; receiving the trained model and a first performance metric; receiving a second performance metric associated with a second model; and terminating the development instance based on a determination that the termination condition is satisfied based on at least one of the first and second performance metrics.

Status:
Application
Type:

Utility

Filling date:

27 Jan 2022

Issue date:

12 May 2022