one
MACHINE LEARNING MODEL FOR ENTITY RESOLUTION
Last updated:
Abstract:
In some implementations, a system may define common attributes of a first dataset and a second dataset. The system may generate a candidate set of mappings between one or more entities in the first dataset and one or more entities in the second dataset based on candidate generation criteria associated with a related pair of common attributes. The system may generate feature sets for the candidate set of mappings based on the common attributes and a featurization configuration. The system may train a machine learning model for performing entity resolution between the first dataset and the second dataset. The system may perform entity resolution between the first dataset and the second dataset based on the feature sets for the candidate set of mappings using the trained machine learning model.
Utility
10 Feb 2021
11 Aug 2022