The Boeing Company
Prediction methods and systems for structural repair during heavy maintenance of aircraft

Last updated:

Abstract:

Hybrid feature selection methods include methods of creating a predictive model for structural repair during heavy maintenance in a fleet of aircraft. Methods include qualifying a qualification dataset of fatigue-related parameters calculated from data collected during a first group of flights of a first aircraft that experience a replacement of a structural component during heavy maintenance. Methods include receiving a qualified selection of the fatigue-related parameters and verifying a verification dataset of the qualified selection of the fatigue-related parameters calculated from data collected during a second group of flights of a second aircraft that experienced heavy maintenance without replacement of the structural component. Methods include receiving a set of verified and qualified fatigue-related parameters and building a predictive model for structural repair during heavy maintenance with a training dataset of the verified and qualified fatigue-related parameters calculated from data collected during additional flights of the fleet.

Status:
Grant
Type:

Utility

Filling date:

24 Jun 2016

Issue date:

12 Nov 2019