The Boeing Company
MACHINE LEARNING MODEL DEVELOPMENT
Last updated:
Abstract:
A method of machine learning model development includes building an autoencoder including an encoder trained to map an input into a latent representation, and a decoder trained to map the latent representation to a reconstruction of the input. The method includes building an artificial neural network classifier including the encoder, and a classification layer partially trained to perform a classification in which a class to which the input belongs is predicted based on the latent representation. Neural network inversion is applied to the classification layer to find inverted latent representations within a decision boundary between classes in which a result of the classification is ambiguous, and inverted inputs are obtained from the inverted latent representations. Each inverted input is labeled with a class that is its ground truth, and thereby producing added training data for the classification, and the classification layer is further trained using the added training data.
Utility
21 Oct 2019
22 Apr 2021