Alibaba Group Holding Limited
Pushing items to users based on a reinforcement learning model

Last updated:

Abstract:

This disclosure is related to determining an item push list for a user based on a reinforcement learning model. In one aspect, a method includes obtaining M first item lists that have been predetermined for a first user. Each first item list includes i-1 items. For each first item list, an ith state feature vector is obtained. The ith state feature vector includes a static feature and a dynamic feature. The ith state feature vector is provided as input to the reinforcement machine learning model. The reinforcement model outputs a weight vector including weights of sorting features. A sorting feature vector of each item in a candidate item set corresponding to the first item list is obtained. The sorting feature vector includes feature values of sorting features. M updated item lists are determined for the first item lists based on a score for each item in M candidate item sets.

Status:
Grant
Type:

Utility

Filling date:

9 Mar 2020

Issue date:

26 Jan 2021