Cisco Systems, Inc.
Adaptive training of machine learning models based on live performance metrics
Last updated:
Abstract:
In one embodiment, a device deploys a first machine learning model to an inference location in a network. The first machine learning model is used at the inference location to make inferences about the network. The device receives, from the inference location, an indication that the first machine learning model is exhibiting poor performance. The device identifies a corrective measure for the poor performance that minimizes resource consumption by a model training pipeline of the device. The device deploys, based on the corrective measure, a second machine learning model to the inference location. The second machine learning model is used in lieu of the first machine learning model to make the inferences about the network.
Utility
4 May 2020
6 Sep 2022