DexCom, Inc.
Diabetes prediction using glucose measurements and machine learning

Last updated:

Abstract:

Diabetes prediction using glucose measurements and machine learning is described. In one or more implementations, the observation analysis platform includes a machine learning model trained using historical glucose measurements and historical outcome data of a user population to predict a diabetes classification for an individual user. The historical glucose measurements of the user population may be provided by glucose monitoring devices worn by users of the user population, while the historical outcome data includes one or more diagnostic measurements obtained from sources independent of the glucose monitoring devices. Once trained, the machine learning model predicts a diabetes classification for a user based on glucose measurements collected by a wearable glucose monitoring device during an observation period spanning multiple days. The predicted diabetes classification may then be output, such as by generating one or more notifications or user interfaces based on the classification.

Status:
Grant
Type:

Utility

Filling date:

30 Jun 2020

Issue date:

30 Aug 2022