eBay Inc.
ANOMALY DETECTION FOR NON-STATIONARY DATA

Last updated:

Abstract:

A method of detecting anomalies in a time series is disclosed. A training time series corresponding to a process is extracted from an initial time series corresponding to the process, the training time series including a subset of the initial time series. Outlier data points in the training time series are modified based on predetermined acceptability criteria. A plurality of prediction methods are trained using the training time series. An actual data point corresponding to the initial time series is received. The plurality of prediction methods are used to determine a set of predicted data points corresponding to the actual data point. It is determined whether the actual data point is anomalous based on a calculation of whether each of the set of predicted data points is statistically different from the actual data point.

Status:
Application
Type:

Utility

Filling date:

12 Sep 2019

Issue date:

12 Mar 2020