Fair Isaac Corporation
TRAINING ARTIFICIAL NEURAL NETWORKS WITH CONSTRAINTS

Last updated:

Abstract:

Systems and methods for training a machine learning model implemented over a network configured to represent the machine learning model are provided. At least one or more directed edges connect the one or more nodes an edge representing a connection between a first node and a second node, the second node computing an activation depending on the values of activations on first nodes and values associated with the connections, the connection being either conforming or non-conforming. The machine learning model may be trained by iteratively adjusting parameters w and b, respectively associated with weights and biases associated with edges connecting computational nodes. Connections between nodes may be sparsified by adjusting the parameter w to a first value for non-conforming connections during the training phase to reduce complexity of the connections among the plurality of nodes, or to ensure the input-output function of the network adheres to additional constraints.

Status:
Application
Type:

Utility

Filling date:

18 Mar 2020

Issue date:

23 Sep 2021