General Electric Company
SITUATION AWARENESS AND DYNAMIC ENSEMBLE FORECASTING OF ABNORMAL BEHAVIOR IN CYBER-PHYSICAL SYSTEM

Last updated:

Abstract:

A plurality of monitoring nodes may each generate a time-series of current monitoring node values representing current operation of a cyber-physical system. A feature-based forecasting framework may receive the time-series of and generate a set of current feature vectors using feature discovery techniques. The feature behavior for each monitoring node may be characterized in the form of decision boundaries that separate normal and abnormal space based on operating data of the system. A set of ensemble state-space models may be constructed to represent feature evolution in the time-domain, wherein the forecasted outputs from the set of ensemble state-space models comprise anticipated time evolution of features. The framework may then obtain an overall features forecast through dynamic ensemble averaging and compare the overall features forecast to a threshold to generate an estimate associated with at least one feature vector crossing an associated decision boundary.

Status:
Application
Type:

Utility

Filling date:

22 Aug 2018

Issue date:

27 Feb 2020