General Electric Company
LEARNING METHOD AND SYSTEM FOR SEPARATING INDEPENDENT AND DEPENDENT ATTACKS

Last updated:

Abstract:

Streams of monitoring node signal values over time, representing a current operation of the industrial asset, are used to generate current monitoring node feature vectors. Each feature vector is compared with a corresponding decision boundary separating normal from abnormal states. When a first monitoring node passes a corresponding decision boundary, an attack is detected and classified as an independent attack. When a second monitoring node passes a decision boundary, an attack is detected and a first decision is generated based on a first set of inputs indicating if the attack is independent/dependent. From the beginning of the attack on the second monitoring node until a final time, the first decision is updated as new signal values are received for the second monitoring node. When the final time is reached, a second decision is generated based on a second set of inputs indicating if the attack is independent/dependent.

Status:
Application
Type:

Utility

Filling date:

11 May 2018

Issue date:

25 Jul 2019