General Electric Company
Massively accelerated Bayesian machine

Last updated:

Abstract:

According to some embodiments, system and methods are provided comprising: receiving data; providing a simulation model for the data; generating one or more simulations via a Bayesian module based on the data, wherein the simulation includes one or more nodes in a chain; executing the Bayesian module to determine the acceptability of the nodes in the simulation based on a Bayesian rule, wherein execution of the Bayesian module further comprises: generating a binary decision tree representing the chain in the simulation, wherein the chain includes one or more nodes; prioritizing which nodes in the tree to simulate; generating one or more simulations; executing the simulation model with data associated with the prioritized nodes in the tree in parallel to determine a posterior probability for each prioritized node; and determining whether each prioritized node is accepted or rejected based on the posterior probabilities. Numerous other aspects are provided.

Status:
Grant
Type:

Utility

Filling date:

9 Jan 2017

Issue date:

21 Jul 2020