General Electric Company
Training an auto-encoder on a single class
Last updated:
Abstract:
Systems and techniques for training an auto-encoder on a single class are presented. In one example, a system trains an auto-encoder based on first data associated with a first class to generate a trained auto-encoder. The system also applies, using a multiplier, gain data indicative of a gain value to second data associated with the first class and third data associated with a second class to generate enhanced input data that represents a differentiation between the second data associated with the first class and the third data associated with the second class. An input enhancer comprises the trained auto-encoder and the multiplier. Furthermore, the system trains a convolutional neural network based on the enhanced input data to generate a trained convolutional neural network. The system also classifies the first class and the second class based on the input enhancer and the trained convolutional neural network.
Utility
27 Dec 2017
31 Mar 2020