General Electric Company
Systems and methods for cyber-attack detection at sample speed

Last updated:

Abstract:

A threat detection model creation computer receives normal monitoring node values and abnormal monitoring node values. At least some received monitoring node values may be processed with a deep learning model to determine parameters of the deep learning model (e.g., a weight matrix and affine terms). The parameters of the deep learning model and received monitoring node values may then be used to compute feature vectors. The feature vectors may be spatial along a plurality of monitoring nodes. At least one decision boundary for a threat detection model may be automatically calculated based on the computed feature vectors, and the system may output the decision boundary separating a normal state from an abnormal state for that monitoring node. The decision boundary may also be obtained by combining feature vectors from multiple nodes. The decision boundary may then be used to detect normal and abnormal operation of an industrial asset.

Status:
Grant
Type:

Utility

Filling date:

11 Apr 2017

Issue date:

17 Mar 2020