International Business Machines Corporation
STRAGGLER MITIGATION FOR ITERATIVE MACHINE LEARNING VIA TASK PREEMPTION
Last updated:
Abstract:
Embodiments of the present invention provide computer-implemented methods, computer program products and systems. Embodiments of the present invention can run preemptable tasks distributed according to a distributed environment, wherein each task of a plurality of preemptable tasks has been assigned two or more of the training data samples to process during each iteration. Embodiments of the present invention can, upon verifying that a preemption condition for each iteration is satisfied: preempt any task of the preemptable tasks that have started processing training data samples assigned to it, and update the cognitive model based on outputs obtained from completed tasks, including outputs obtained from both the preempted tasks and completed tasks that have finished processing all training data samples as assigned to it.
Utility
2 Apr 2020
7 Oct 2021