International Business Machines Corporation
Method and System for Unlabeled Data Selection Using Failed Case Analysis
Last updated:
Abstract:
A method, system, and a computer program product automatically select training data for updating a model by applying human-annotated training data to a model to generate results that are evaluated to identify correct case results and false case results that are categorized into error type categories for use in building error models corresponding to the error type categories, where each error model is built from at least failed case results belonging to a corresponding error type, and where unlabeled data samples are applied to each error model to compute an error likelihood for each unlabeled data sample with respect to each error type category, thereby enabling the selection and display of unlabeled data samples for annotation by a subject matter expert based on a computed error likelihood for the one or more unlabeled data samples in a specified error type category meeting or exceeding an error threshold requirement.
Utility
16 Apr 2020
21 Oct 2021