International Business Machines Corporation
Finding precise causal multi-drug-drug interactions for adverse drug reaction analysis

Last updated:

Abstract:

Mechanisms are provided for implementing a framework to learn multiple drug-adverse drug reaction associations. The mechanisms receive and analyze patient electronic medical record data and adverse drug reaction data to identify co-occurrences of references to drugs with references to adverse drug reactions (ADRs) to thereby generate candidate rules specifying multiple drug-ADR relationships. The mechanisms filter the candidate rules to remove a subset of one or more rules having confounder drugs specified in the subset of one or more candidate rules, and thereby generate a filtered set of candidate rules. The mechanisms further generate a causal model based on the filtered set of candidate rules. The causal model comprises, for each ADR in a set of ADRs, a corresponding set of one or more rules, each rule specifying a combination of drugs having a causal relationship with the ADR.

Status:
Grant
Type:

Utility

Filling date:

6 Mar 2018

Issue date:

2 Nov 2021