International Business Machines Corporation
Hypergraph structure and truncation method that reduces computer processor execution time in predicting product returns based on large scale data
Last updated:
Abstract:
A hypergraph is constructed based on historical shopping cart data. A node of the hypergraph corresponds to a shopping basket, and a hyperedge of the hypergraph corresponds to a unique product, the hyperedge connecting all nodes of the hypergraph representing baskets containing the unique product. A hypergraph partition algorithm identifies a cluster of shopping baskets represented in the hypergraph and determined to be similar to a given basket. Based on the cluster of shopping baskets a dual-level return prediction is performed. The dual-level return prediction includes predicting whether the given basket will be returned, and based on predicting that the given basket will be returned, predicting a probability that a product in the given basket will be returned. Based on predicting that the given basket will be returned, an ameliorative action is performed to reduce the probability.
Utility
19 Nov 2018
2 Nov 2021