International Business Machines Corporation
Model matching and learning rate selection for fine tuning
Last updated:
Abstract:
A method, computer system, and computer program product for model selection for training a new dataset is provided. The present invention may include choosing a model from a set of models to be evaluated for training the new dataset, selecting a sample input from a subset of the new dataset, calculating a model activation score for each of the sample inputs in the chosen model, calculating an accumulated model activation score for the chosen model, depending on the model activation score of each of the sample inputs in the chosen model, calculating an accumulated model activation score for each model from the set of models to be evaluated for training the new dataset, and selecting the model for training the new dataset with the highest accumulated model activation score.
Utility
8 Nov 2017
2 Nov 2021