International Business Machines Corporation
SEMI-SUPERVISED LEARNING WITH GROUP CONSTRAINTS
Last updated:
Abstract:
A computer-implemented method for classification of data by a machine learning system using a logic constraint for reducing a data labeling requirement. The computer-implemented method includes: generating a first embedding space from a first partially labeled training data set, wherein in the first embedding space, content-wise related training data of the first partially labeled training data are clustered together, determining at least two clusters in the first embedding space formed from the first partially labeled training data, and training a machine learning model based, at least in part, on a second partially labeled training data set and the at least two clusters, wherein the at least two clusters are used as training constraints.
Utility
14 May 2020
18 Nov 2021