International Business Machines Corporation
Continuous control of attention for a deep learning network
Last updated:
Abstract:
A computer-implemented method for reducing computation cost associated with a machine learning task performed by a computer system by implementing continuous control of attention for a deep learning network includes initializing a control-value function, an observation-value function and a sequence of states associated with a current episode. If a current epoch associated with the current episode is odd, an observation-action is selected, the observation-action is executed to observe a partial image, and the observation-value function is updated based on the partial image and the control-value function. If the current epoch is even, a control-action is selected, the control-action is executed to obtain a reward corresponding to the control-action, and the control-value function is updated based on the reward and the observation-value function.
Utility
19 Jul 2018
30 Nov 2021