International Business Machines Corporation
USING NEGATIVE EVIDENCE TO PREDICT EVENT DATASETS

Last updated:

Abstract:

A computer-implemented method is presented for learning relationships between multiple event types by employing a multi-channel neural graphical event model (MCN-GEM). The method includes receiving, by a computing device, time-stamped, asynchronous, irregularly spaced event epochs, generating, by the computing device, at least one fake epoch between each inter-event interval, wherein fake epochs represent negative evidence, feeding the event epochs and the at least one fake epoch into long short term memory (LSTM) cells, computing hidden states for each of the event epochs and the at least one fake epoch, feeding the hidden states into spatial and temporal attention models, and employing an average attention across all event epochs to generate causal graphs representing causal relationships between all the event epochs.

Status:
Application
Type:

Utility

Filling date:

8 Jun 2020

Issue date:

9 Dec 2021