International Business Machines Corporation
SIMILARITY BASED PER ITEM MODEL SELECTION FOR MEDICAL IMAGING

Last updated:

Abstract:

Embodiments may include techniques to choose a model based on a similarity of computed features of an input to computed features of several models in order to improve feature analysis using Machine Learning models. A method of image analysis may comprise extracting a training feature vector corresponding to each of the plurality of machine learning models from each validation image from a plurality of machine learning models trained using a plurality of validation images, extracting from a new image a new feature vector corresponding to each of the plurality of machine learning models, comparing each new feature vector corresponding to each machine learning model with the training feature vector corresponding to each of the plurality of machine learning models, and selecting and outputting an inference for the new image generated by the machine learning model for which the new feature vector and the training feature vector are most similar.

Status:
Application
Type:

Utility

Filling date:

8 Jul 2020

Issue date:

13 Jan 2022