International Business Machines Corporation
NEURAL-BASED ONTOLOGY GENERATION AND REFINEMENT
Last updated:
Abstract:
Aspects of the present disclosure relate to neural-based ontology generation and refinement. A set of input data can be received. A set of entities can be extracted from the set of input data using a named-entity recognition (NER) process, each entity having a corresponding label, the corresponding labels making up a label set. The label set can be compared to concepts in a set of reference ontologies. Labels that match to concepts in the set of reference ontologies can be selected as a candidate concept set. Relations associated with the candidate concepts within the set of reference ontologies can be identified as a candidate relation set. An ontology can then be generated using the candidate concept set and candidate relation set.
Utility
24 Jul 2020
27 Jan 2022