International Business Machines Corporation
System and method for augmenting few-shot object classification with semantic information from multiple sources

Last updated:

Abstract:

Embodiments may provide learning and recognition of classifications using only one or a few examples of items. For example, in an embodiment, a method of computer vision processing may be implemented in a computer comprising a processor, memory accessible by the processor, and computer program instructions stored in the memory and executable by the processor, the method may comprise training a neural network system implemented in the computer system to classify images into a plurality of classes using one or a few training images for each class and a plurality of associated semantic information, wherein the plurality of associated semantic information is from a plurality of sources and comprises at least some of class/object labels, textual description, or attributes, and wherein the neural network is trained by modulating the training images by sequentially applying the plurality of associated semantic information and classifying query images using the trained neural network system.

Status:
Grant
Type:

Utility

Filling date:

13 Apr 2020

Issue date:

1 Mar 2022