International Business Machines Corporation
Efficient unsupervised anomaly detection on homomorphically encrypted data

Last updated:

Abstract:

Aspects of the present disclosure describe techniques for detecting anomalous data in an encrypted data set. An example method generally includes receiving a data set of encrypted data points. A tree data structure having a number of levels is generated for the data set. Each level of the tree data structure generally corresponds to a feature of the encrypted plurality of features, and each node in the tree data structure at a given level represents a probability distribution of a likelihood that each data point is less than or greater than a split value determined for a given feature. An encrypted data point is received for analysis, and anomaly score is calculated based on a probability identified for each of the plurality of encrypted features. Based on determining that the calculated anomaly score exceeds a threshold value, the encrypted data point is identified as potentially anomalous.

Status:
Grant
Type:

Utility

Filling date:

20 Sep 2019

Issue date:

8 Mar 2022