International Business Machines Corporation
STATE-AUGMENTED REINFORCEMENT LEARNING
Last updated:
Abstract:
A processor training a reinforcement learning model can include receiving a first dataset representing an observable state in reinforcement learning to train a machine to perform an action. The processor receives a second dataset. Using the second dataset, the processor trains a machine learning classifier to make a prediction about an entity related to the action. The processor extracts an embedding from the trained machine learning classifier, and augments the observable state with the embedding to create an augmented state. Based on the augmented state, the processor trains a reinforcement learning model to learn a policy for performing the action, the policy including a mapping from state space to action space.
Utility
19 Oct 2020
21 Apr 2022