International Business Machines Corporation
Domain aware explainable anomaly and drift detection for multi-variate raw data using a constraint repository

Last updated:

Abstract:

Methods, systems, and computer program products for domain aware explainable anomaly and drift detection for multi-variate raw data using a constraint repository are provided herein. A computer-implemented method includes obtaining a set of data and information indicative of a domain of said set of data; obtaining constraints from a domain-indexed constraint repository based on said set of data and said information, wherein the domain-indexed constraint repository comprises a knowledge graph having a plurality of nodes, wherein each node comprises an attribute associated with at least one of a plurality of domains and constraints corresponding to the attribute; detecting anomalies in said set of data based on whether portions of said set of data violate said retrieved constraints; generating an explanation corresponding to each of the anomalies that describe the attributes corresponding to the violated constraints; and outputting an indication of the anomalies and the corresponding explanation.

Status:
Grant
Type:

Utility

Filling date:

27 Sep 2019

Issue date:

3 May 2022