International Business Machines Corporation
DATA SWAPPING FOR NEURAL NETWORK MEMORY CONSERVATION
Last updated:
Abstract:
Methods and systems for training a neural network include identifying units within a neural network, including a first unit for memory swapping and a second unit for re-computation to balance memory efficiency with computational efficiency. Each unit includes at least one layer of the neural network. Each unit has a first layer that is a checkpoint operation. During a feed-forward training stage, feature maps are stored in a first memory. The feature maps are output by the at least one layer of the first unit. The feature maps are swapped from the first memory to a second memory. During a backpropagation stage, the feature maps for the first unit are swapped from the second memory to the first memory. Feature maps for the second unit are re-computed.
Utility
4 Nov 2020
5 May 2022