International Business Machines Corporation
FEDERATED LEARNING FOR MULTI-LABEL CLASSIFICATION MODEL FOR OIL PUMP MANAGEMENT
Last updated:
Abstract:
A computer implemented federated learning method of predicting failure of assets includes generating a local model at a local site for each of the cohorts and training the local model on local data for each of the cohorts for each failure type. The local model is shared with a central database. A global model is created based on an aggregation of a plurality of the local models from a plurality of the local sites. At each of the plurality of local sites, one of the global model and the local model is chosen for each of the cohorts. The chosen model operates on local data to predict failure of the assets. The utilized features include partitioning features of the assets into static features, semi-static features, and dynamic features, and forming cohorts of the assets based on the static features and the semi-static features.
Utility
15 Dec 2020
16 Jun 2022