International Business Machines Corporation
CROSS-DOMAIN STRUCTURAL MAPPING IN MACHINE LEARNING PROCESSING
Last updated:
Abstract:
A method of using a computing device executing to interrelate two or more corpuses of dissimilar data that includes receiving input data from each of two or more corpuses of dissimilar data. The computing device computes a pass for each of the input data into two or more encoder-decoder models. The computing device further obtains a prediction of an identity mapping for each of different domains of knowledge from each of the two or more encoder-decoder models. The computing device additionally computes a distribution distance metric as an output from each of a low-dimensional embedding vector representation from each of the two or more encoder-decoder models. The computing device still further computes a function based on each of the predictions from each of the two or more encoder-decoder models and the distribution distance metrics. The computing device additionally updates the two or more encoder-decoder models.
Utility
31 Dec 2020
30 Jun 2022