International Business Machines Corporation
Active imitation learning in high dimensional continuous environments

Last updated:

Abstract:

According to one embodiment, a computer-implemented method for active, imitation learning, includes: providing training data comprising an expert trajectory to a processor; querying the expert trajectory during an iterative, active learning process; generating a decision policy based at least in part on the expert trajectory and a result of querying the expert trajectory; attempting to distinguish the decision policy from the expert trajectory; in response to distinguishing the decision policy from the expert trajectory, outputting a policy update and generating a new decision policy based at least in part on the policy update; and in response to not distinguishing the decision policy from the expert trajectory, outputting the decision policy. Importantly, the expert trajectory is queried for only a subset of iterations of the iterative, active learning process, wherein the most uncertain state/action pair(s) from the expert trajectory are determined using one or more disagreement functions.

Status:
Grant
Type:

Utility

Filling date:

6 Sep 2018

Issue date:

9 Aug 2022