International Business Machines Corporation
Swarm fair deep reinforcement learning
Last updated:
Abstract:
Fair deep reinforcement learning is provided. A microstate of an environment and reaction of items in a plurality of microstates within the environment are observed after an agent performs an action in the environment. Semi-supervised training is utilized to determine bias weights corresponding to the action for the microstate of the environment and the reaction of the items in the plurality of microstates within the environment. The bias weights from the semi-supervised training are merged with non-bias weights using an artificial neural network. Over time, it is determined where bias is occurring in the semi-supervised training based on merging the bias weights with the non-bias weights in the artificial neural network. A deep reinforcement learning model that decreases reliance on the bias weights is generated based on determined bias to increase fairness.
Utility
25 Apr 2019
16 Aug 2022