International Business Machines Corporation
EXPLAINING OUTLIERS IN TIME SERIES AND EVALUATING ANOMALY DETECTION METHODS

Last updated:

Abstract:

Time series data can be received. A machine learning model can be trained using the time series data. A contaminating process can be estimated based on the time series data, the contaminating process including outliers associated with the time series data. A parameter associated with the contaminating process can be determined. Based on the trained machine learning model and the parameter associated with the contaminating process, a single-valued metric can be determined, which represents an impact of the contaminating process on the machine learning model's future prediction. A plurality of different outlier detecting machine learning models can be used to estimate the contaminating process and the single-valued metric can be determined for each of the plurality of different outlier detecting machine learning models. The plurality of different outlier detecting machine learning models can be ranked according to the associated single-valued metric.

Status:
Application
Type:

Utility

Filling date:

8 Feb 2021

Issue date:

11 Aug 2022