International Business Machines Corporation
Bias Detection in Conversational Agent Platforms
Last updated:
Abstract:
A mechanism is provided for implementing a bias detection mechanism that mitigates unintended bias in a conversational agent by leveraging conversational agent definitions, a conversational agent chat logs, and user satisfaction statistics. One or more protected attributes are identified within an utterance from the conversational agent chat logs. Using the identified protected attributes, a replacement utterance with a replacement term is generated for at least one of the identified protected attributes in the utterance. A score is generated for the utterance and the replacement utterance using utterance level relative term importance for protected attributes and regular terms in the utterance and the replacement utterance. Utilizing the scoring, a determination is made as to whether unintended bias exists within the utterance. Responsive to unintended bias being detected, an action is implemented that causes a change to a machine learning model used by the conversational agent.
Utility
15 Jan 2020
15 Jul 2021