International Business Machines Corporation
BUILDING A COMPLEMENTARY MODEL FOR AGGREGATING TOPICS FROM TEXTUAL CONTENT

Last updated:

Abstract:

Aspects of the present disclosure describe techniques for generating a machine learning model for extracting information from textual content. The method generally includes receiving a training data set including a plurality of documents having related textual strings. A relevancy model is generated from the training data set. The relevancy model is generally configured to generate relevance scores for a plurality of words extracted from the plurality of documents. A knowledge graph model illustrating relationships between the plurality of words extracted from the plurality of documents is generated from the training data set. The relevancy model and the knowledge graph model are aggregated into a complimentary model including a plurality of nodes from the knowledge graph model and weights associated with edges between connected nodes, wherein the weights comprise relevance scores generated from the relevancy model, and the complimentary model is deployed for use in analyzing documents.

Status:
Application
Type:

Utility

Filling date:

3 Jan 2020

Issue date:

8 Jul 2021