Intel Corporation
Pattern recognition and prediction using a knowledge engine

Last updated:

Abstract:

Various systems and methods for processing activity data with a knowledge engine to generate actionable insights for a human subject are described. These actionable insights may include identifying a most likely action given a particular state of the human subject, identifying a most likely state in which the human subject performs a particular activity, or identifying anomalies in human activity patterns. In an example, an electronic processing system operates the knowledge engine with operations that: identify patterns of activity using clustering of events, identify meaningful patterns of activity from the patterns of activity based on co-occurrence of characteristics for respective events, rank the identified meaningful patterns of activity based on confidence and support of respective patterns to occur for a human subject, and generate a personalization action (such as an action for a software application) based on the ranked, identified meaningful patterns of activity.

Status:
Grant
Type:

Utility

Filling date:

24 Jan 2017

Issue date:

22 Feb 2022