Intel Corporation
MACHINE LEARNING-BASED LINK ADAPTATION
Last updated:
Abstract:
Aspects for machine learning-based link adaptation are described. For example, an apparatus can determine k-nearest neighbors (K-NNs) based on training data associated with the sub-band and on the signal to interference and noise ratio (SINR) of the sub-band. In aspects, the apparatus can identify a channel quality indicator (CQI) associated with the lowest error rate for the k-NNs and provide the identified CQI to a base station. In aspects, a neural network (NN) can provide labels for CQIs that indicate probability of choosing a CQI, and the CQI having highest probability will be provided to a base station. In aspects, a covariance matrix based on samples of a communication channel can be provided to a NN to determine a rank indicator (RI) corresponding to the channel, and channel state information associated with the (RI) can be sent to the base station. Other aspects are described.
Utility
28 Sep 2018
15 Jul 2021