Intuit Inc.
GENERALIZED METRIC FOR MACHINE LEARNING MODEL EVALUATION FOR UNSUPERVISED CLASSIFICATION

Last updated:

Abstract:

Certain aspects of the present disclosure provide techniques for generalized metric for machine learning model evaluation for unsupervised classification including: for each unsupervised machine learning model of one or more unsupervised machine learning models: generating a first set of synthetic inputs for the model of the one or more unsupervised machine learning models; providing the first set of synthetic inputs to the model trained to output a prediction for each input of the first set of synthetic inputs, wherein the prediction indicates whether the input is of a first class; identifying, based on an output of the model, a second set of synthetic inputs predicted to be of the first class; determining, based on a set of expected normal inputs for the model and the second set of synthetic inputs, an accuracy score for the unsupervised machine learning model; and providing the accuracy score for display.

Status:
Application
Type:

Utility

Filling date:

9 Jul 2020

Issue date:

13 Jan 2022